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Abstract - Proton Exchange Membrane Fuel Cell (PEMFC) also known as Polymer Electrolyte Membrane Fuel Cell is one of the 

cleanest and most efficient energy conversion devices. PEMFC is expected to play a very big role in future energy solutions. PEM 

Fuel Cells work by converting the chemical energy of a fuel which is mainly hydrogen directly into electrical energy which can be 

used for running various electrical appliances. This is achieved by the reaction of hydrogen with oxygen over a catalyst such as 

Platinum and water is obtained as the by-product. PEM Fuel Cells are very promising electrochemical devices because they are 

highly efficient, have high power density and low emissions. Machine learning is a methodology that trains a certain model to obtain 

a certain data-fitting model based on the existing data fed to it and uses this model to execute predictions with high nonlinear 

problem forecasting accuracy and with higher computational efficiency. Machine learning models are widely used to predict 

parameters of various energy conversion devices. PEM Fuel Cell is also one of those devices with parameters like fuel cell 

performance, efficiency being accurately predicted by machine learning algorithms. 

Index Terms - Energy, Fuel Cell, Hydrogen, Machine Learning, PEM  

 

I. INTRODUCTION 

The Proton Exchange Membrane used in PEM Fuel Cell is made up of a material like Perfluorosulfonic acid polymer (PFSA) that 

allows charged molecules which are also called ions to travel through the membrane, that separates the fuel (which is hydrogen) 

from the oxidant (air or oxygen). In a proton-exchange membrane fuel cell, catalysts are used in the catalyst layers (CL) to speed 

up and direct chemical reactions. The working principle of a PEM Fuel Cell is shown in Fig.1. At the anode, the platinum catalyst 

splits hydrogen molecules into protons and electrons. At the cathode, the platinum catalyst reacts with protons from the anode to 

reduce oxygen, producing water. The catalyst employed generally consists of Platinum (Pt) and Pt-alloy nanoparticles, while the 

catalyst supports are usually made of high specific surface carbons such as Vulcan carbon, ordered porous carbon, hollow graphitic 

particles, etc. Right now carbon-supported Platinum materials are the most recommended catalysts for PEM Fuel Cells as it has the 

highest catalytic activity for oxygen reduction reaction (ORR) at cathode side and hydrogen oxidation reaction at anode side. 

Platinum is an expensive element and due to its use as an electrolyte material has caused the cost of PEM Fuel Cells to rise and this 

has become one of the major challenges for their commercialization [1]. 

There are a number of parameters governing the performance and behaviour of PEM Fuel Cells including factors such as cell 

voltage, current density, temperature, humidity levels, and electrochemical impedance. Achieving optimal performance requires not 

only accurate measurement and monitoring of these parameters but also the ability to predict and analyse their behaviour under 

diverse operating conditions. 

Fuel cells are categorised based on the type of electrolytes employed, with notable divisions including polymer electrolyte membrane 

(PEM) fuel cells (PEMFCs), solid oxide fuel cells (SOFCs), alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), and 

molten carbonate fuel cells (MCFCs). Among these, PEMFCs are one of the best choices for vehicular applications, boasting 

advantages such as high electrical energy conversion efficiency, elevated power density, low operational temperatures, and rapid 

startup capabilities. PEMFCs are mainly composed of a Proton exchange membrane, catalyst layer (CL), gas diffusion layer (GDL), 

and bipolar plate (BP) [2].  

https://www.sciencedirect.com/topics/materials-science/polymer-electrolyte
https://www.sciencedirect.com/topics/materials-science/nanoparticle
https://www.sciencedirect.com/topics/materials-science/carbon-surface
https://www.sciencedirect.com/topics/materials-science/porous-carbon
https://www.sciencedirect.com/topics/materials-science/oxidation-reaction
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Fig. 1. Working of a PEM Fuel Cell 

Traditionally, predicting and analysing PEM Fuel Cell parameters have been challenging tasks, which used to often rely on empirical 

correlations, complex mathematical models, and extensive experimental testing. However, these approaches are limited by their 

reliance on simplifying assumptions, computational inefficiency, and the sheer complexity of the underlying physical and chemical 

processes. 

Machine learning is a method that applies model training to obtain a certain data-fitting model based on existing data and uses this 

model to execute predictions with high nonlinear problem forecasting accuracy and computational efficiency. Machine learning 

models are widely used to predict fuel cell performance, ageing, and fault diagnosis [2][3]. 

Enter machine learning (ML), a transformative paradigm that holds the promise of revolutionising the predictive modelling and 

analysis of PEM Fuel Cell parameters. ML algorithms offer a data-driven approach that can extract intricate patterns and 

relationships from large datasets, enabling more accurate and efficient predictions of fuel cell behaviour [3]. 

Machine learning (ML) is an innovative paradigm which will significantly revolutionise the predictive modelling and analysis of 

PEM Fuel Cell parameters. ML algorithms present a data-focused approach that enables the identification of intricate patterns and 

correlations in large datasets. This facilitates improved precision and efficiency in predicting the behaviour of fuel cells. 

The integration of ML into PEM Fuel Cell research represents a paradigm shift, empowering researchers to overcome the limitations 

of traditional methods and unlock new insights into fuel cell performance. By leveraging advanced ML techniques such as 

regression, classification, clustering, and neural networks, researchers can develop predictive models that capture the complex 

interplay of factors influencing fuel cell operation. 

One of the biggest advantages is that ML algorithms have the potential to adapt and learn from new data, enabling continuous 

improvement and refinement of predictive models over time. This adaptability is particularly valuable and comes in handy in the 

context of PEM Fuel Cells, where operating conditions do vary widely, and real-time adjustments are necessary to optimise 

performance and efficiency. 

In this paper, we explore the role of machine learning in predicting and analysing PEM Fuel Cell parameters, with a focus on the 

challenges, methodologies, and opportunities associated with this interdisciplinary endeavour. By elucidating the benefits of ML-

driven predictive modelling and analysis, we hope to inspire further research and innovation in this exciting field. Ultimately, our 

goal is to contribute to the development of cleaner, more efficient, and more sustainable energy solutions powered by PEM Fuel 

Cells. 

 

II. PEMFC PARAMETERS 

There are various physical parameters that govern the functioning of a PEMFC, those parameters are defined in detail here: 

(1) Fuel Cell Temperature: The operating temperature of a fuel cell is considered to be one the most crucial factors in a fuel 

cell operating system. Various parameters of a fuel cell like current density, membrane conductivity, synthesis of input gas 

streams, and water vapour pressure are influenced by the fuel cell temperature [4].The kinetics of the PEMFC is also 

influenced by the operating temperature of the fuel cell, the current density increases as the fuel cell temperature rises [5] 

.The operating temperature of fuel cell must be in a suitable range so that a constant electrochemical reaction rate can be 

obtained and corrosion of PEMFC materials can be avoided. If the fuel cell is operated at high temperature, then the 

membrane can dehydrate or it can decompose which will result in a decreased cell voltage and hence the performance and 

efficiency of the PEM Fuel Cell will eventually decrease. Optimum temperature range for this fuel cell lies between 65-85 

°C [6] and we have taken 70 °C for our calculations. 

 

(3) Number of cells: Proton exchange membrane Fuel Cell (PEMFC) will play a very crucial role in upcoming years because 

it has high power density, quiet operation and low operating temperature. One of the applications of PEMFC is to be used 

as a mini portable power supply for which PEMFC is usually assembled as a stack of many cells [7]. A single PEM Fuel 

Cell does not generate enough voltage to be used for experiments or for practical applications so generally a number of 

individual fuel cells are stacked to generate enough voltage. A stack of 5 fuel cells is considered for this research. 
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(4) No load voltage: The no-load voltage which is also known as open circuit voltage is the voltage drawn when zero current 

is drawn from the supply Theoretically, no - load voltage at normal temperature and pressure or at NTP condition should 

be equal to 1.23 Volts. We have taken No load voltage as 1.229 Volts for this research. 

(5) Hydrogen time constant: The calculation for hydrogen time constant is carried out by using the equation [8][9] 

𝜏𝐻2 = 𝑉𝑎𝑛 / 𝐾𝐻2 𝑅 T 

Here Van  stands for the volume of the anode R is universal gas constant and T stands for Temperature. 𝜏𝐻2   denotes the 

hydrogen time constant with a value of 3.37 seconds [10]. 

(6) Membrane thickness: Membrane thickness is one of the most important parameters for designing a fuel cell. Various 

properties of fuel cells are influenced by the membrane thickness. Generally, there are two advantages of using thinner 

membranes, first is increased conductivity and the other one is reduced cost. These two advantages have resulted in the 

shrinking of membrane thickness over the time [11]. Hence it is very crucial to select an appropriate membrane thickness 

and hence thickness of 0.0178 cm has been selected for this research [12]. 

(7) Active Area: The electrochemically active part of the electrode which can produce electricity from the fuel supplied to it is 

referred as the Active area. The performance and the local transport processes are influenced by the active area of the fuel 

cell [13]. The PEM Fuel Cells could be fabricated at different active areas for specific applications. Increasing the active 

area of the PEM Fuel Cell increases the cell power, but not in a proportional manner [14]. The PEM Fuel Cell active area 

for this research is 50.6 cm2. 

(8) Reformer time constant: A reformer’s function is to produce the hydrogen gas from fuels and provide it to the stack [15][16]. 

To control the hydrogen flow according to the output power from the fuel cell, feedback from the stack current is 

considered. A reformer time constant of 2 seconds is taken for this research [17][18]. 

(9) Electrical Resistance: The electrical resistance of a PEM Fuel Cell (proton-exchange membrane fuel cell) is the total 

resistance of the cell, and this resistance is determined by varying current densities and relative humidity (RH) conditions 

[19][20]. Also, the electrical contact resistance is a key parameter for optimising both the bipolar plate of the polymer 

electrolyte membrane fuel cell (PEMFC) and the electrical contact of the power terminal of the stack. The contact resistance 

is affected by the conductivity, roughness, and hardness of the two contacting surfaces [21][22]. 

(10) Max Current Density: Current density is the amount of charge that flows through a unit area in a unit of time. The limiting 

current density of a proton exchange membrane (PEM) fuel cell is the maximum current that can flow through an electrode 

[23][24]. Max current density is 1.5A/cm2 for this research [25]. 

(11) Hydrogen Oxygen fuel ratio: This parameter is very crucial and affects the efficiency and working of a fuel cell. Typically, 

the oxygen stoichiometric ratio is 2:2.5 and the hydrogen to oxygen flow ratio in a fuel cell is typically 1.1 to 1.5 for 

hydrogen and 2 or more for air. The PEM Fuel Cell is operational at room temperature, but the typical operating temperature 

is 60 °C to 80 °C. Also, the performance of fuel cells is greatly influenced by the operating pressure. Hydrogen Oxygen 

fuel ratio for this research is 1.168. 

 
(12) Fig.2. Basic Energy Conversion of a Fuel Cell 

 

(13) Molar flow of methanol: Molar flow rate is the number of moles of a substance that passes a reference plane within a unit 

time interval. Methanol is a volatile, colourless, flammable, poisonous liquid with a distinctive odour. It's also known as 

methyl alcohol or wood alcohol. Methanol is used in many products, including fuel for internal combustion engines, boating 

stoves, and camping. Methanol is used for producing. Methanol contains more hydrogen than compressed or liquified 

hydrogen. Molar flow of methanol is 0.0002 kmol/s for this research. 

(14) Fuel Cell Efficiency: Fuel cell efficiency is perhaps the most important parameter of our research as all of the input work 

and research carried out around the globe focuses primarily on increasing the efficiency of a fuel cell to maximise the 

output power gain. Fuel cell efficiency is basically the ratio of electricity produced to the amount of hydrogen consumed 

for the process. Fig. 2. gives the basic energy conversion of the fuel cell. Fuel cells can operate at very high efficiencies 

when compared with the combustion engines. Generally, fuel cells can have efficiencies up to 60% which is generally 

higher than 30-35% of conventional combustion-based power plants. Also Increasing the maximum current density could 

increase the peak power output and increase the working efficiency [26][27][28]. 

(15) Hydrogen Partial Pressure: Partial pressure is the pressure exerted by a gas in a mixture of gases, assuming that gas alone 

occupies the volume of the mixture at the same temperature. Hydrogen partial pressure is the contribution of the hydrogen 

gas to the total pressure [29]. Also, the output fuel cell voltage will increase as the rate of reaction increases but the partial 

pressure of hydrogen cannot be increased above a certain limit as it may break the membrane of the cell [30]. 

(16) Water partial pressure: The final product of Hydrogen PEM Fuel Cells is water which is produced by the reaction of 

hydrogen with oxygen and this is a highly exothermic reaction. The transportation of this product can hence greatly affect 

the performance of the cell. In a typical hydrogen fuel cell, each kilogram of fuel produces 9 kg of water. In a fuel cell, 

water vapour condensation occurs when the partial pressure of water vapour exceeds the saturation pressure. The water 

vapour partial pressure at the exit of a proton exchange membrane (PEM) fuel cell at 80°C is 95% of the saturated vapour 

pressure at 80°C [31][32].  
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(17) Oxygen Partial Pressure: The oxygen partial pressure in a fuel cell has a great influence on its voltage and power. A fuel 

cell may lose its voltage and power due to low oxygen partial pressure. Also, low oxygen partial pressure can also lead to 

oxygen starvation and cell reversal, which can be very harmful for the stack. A higher oxygen partial pressure can improve 

fuel cell performance. The oxygen partial pressure increases inside the cathode of the stack as the air mass flow increases. 

The oxygen partial pressure also increases with increasing the current density and decreasing the flow rate of hydrogen at 

the same current density [33][34][35][36]. 

(18) Activation losses: Activation losses in fuel cells are the voltage required to overcome the electrochemical reaction's 

activation energy on the catalytic surface. Three major types of fuel cell losses: – Activation losses (losses due to the 

electrochemical reaction) – Ohmic losses (losses due to ionic and electronic conduction) – Concentration losses (losses due 

to mass transport). Ohmic loss, also known as IR loss, is a voltage loss in fuel cells that is caused by resistance to the flow 

of electrons in electrodes, protons in electrolytes, or ions in electrolytes Concentration loss in volts is a loss of voltage that 

occurs when the net current density is not zero [37][38]. 

III. DATA COLLECTION 

The data collected to perform the machine learning task has been collected using an open-source software “OPEM” [39]. The  

 

Fig.3. OPEM software v1.3 

 

OPEM software is a data simulation software that has been particularly developed to simulate PEMFC data and a modelling tool 

for evaluating the performance of proton exchange membrane fuel cells. Version 1.3 has been used. The software has a windows 

command prompt-based user interface as shown in Fig. 3. 

It offers various static as well as dynamic models. These are mathematical formula-based models that generate data for a given set 

of input parameters, and output another set of PEMFC related parameters. The type of models offered in the version used as well as 

their names are given in Table 1.  

The mathematical model used for the research carried out in this paper is the Padulles Amphlett Analysis model shown in Fig. 4. 

The model shown takes into account various input parameters like the starting and ending current, current density, temperature of 

O2, H2 and H2O compounds used in the fuel cell as well as various others, totalling up to 22. All the parameters are named in Table 

2 along with their symbols, unit as well as the values taken. 
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Table 1. Type of Model and Model Name offered in OPEM Software 

 

 

Fig. 4. Padulles Amphlett Dynamic Analysis Block Diagram 

These values used can be input in two ways in the OPEM software, either entering your own values or by inputting a default vector. 

This default vector has been set up in such a way that the simulated values can be considered favourable and ideal.  

On inputting these parameter values, a total of 13 output values are generated, including Fuel Cell Efficiency that we are trying to 

predict. The total number of rows in the output data file are 750. 

𝑖𝑠𝑡𝑜𝑝/𝑖𝑠𝑡𝑒𝑝 = 75/0.1 =  750  

Hence, the dimension of the final dataset is 749 ✕ 13. These output Parameters along with their units are given in Table 3.  

 

 

 

 

S.No. TYPE OF MODEL MODEL NAME 

1 Dynamic Chakraborty Analysis 

2 Dynamic Padulles Amphlett Analysis 

3 Dynamic Padulles Analysis I 

4 Dynamic Padulles Analysis II 

5 Dynamic Padulles Hauer Analysis 

6 Static Amphlett Analysis 

7 Static Chamberline Kim Analysis 

8 Static Larminie Analysis 
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S.No. NAME SYMBOL USED VALUES TAKEN UNIT 

1 Fuel cell temperature T 343 K 

2 Number of cells N0 5 - 

3 No load voltage E0 1.229 V 

4 Hydrogen valve constant KH2 4.22e-05 kmol.s-1.atm-1 

5 Water valve constant KH2O 7.716e-06 kmol.s-1.atm-1 

6 Oxygen valve constant KO2 2.11e-05 kmol.s-1.atm-1 

7 Hydrogen time constant τH2 3.37 s 

8 Water time constant τH2O 18.418 s 

9 Oxygen time constant τO2 6.74 s 

10 Membrane thickness l 0.0178 cm 

11 Active area A 50.6 cm2 

12 Reformer time constant τ1 2 s 

13 Reformer time constant τ2 2 s 

14 Conversion factor CV 2 - 

15 Resistance (Electronic) RElectronic 0 Ω 

16 An adjustable parameter with 

a possible minimum value of  

14 and a maximum value of 23 

λ 23 - 

17 Maximum current density of  

the cell 

JMax 1.5 Acm-2 

18 Hydrogen-Oxygen flow ratio rh-o 1.168 - 

19 Molar flow of methanol qmethanol 0.0002 kmol.s-1 

20 Cell operating current start 

point 

istart 0.1 A 

21 Cell operating current step istep 0.1 A 
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22 Cell operating current  

endpoint 

istop 75 A 

Table 2. Input Parameters in Padulles Amphlett Analysis: Symbols and Units

 

S.No. Name Unit 

1 Current  A 

2 Voltage V 

3 Eta Activation  V 

4 Eta Concentration  V 

5 Eta Ohmic  V 

6 FC Efficiency  - 

7 FC Power  W 

8 FC Voltage  V 

9 Loss  V 

10 H2 Partial Pressure atm 

11 H2O Partial Pressure atm 

12 O2 Partial Pressure atm 

13 Power-Thermal W 

Table 3. Output Parameters and their Units 

IV. MACHINE LEARNING 

Due to the amount of data collected and the type of regression analysis that should be undertaken, the machine learning algorithm: 

Random Forest Regressor, an ensemble model is most suitable.  

Random Forest (RF) is composed of many hundreds if not thousands of decision trees. Each decision tree tries to predict a value for 

a subset of the given training data, then an average of each tree is taken for the final decision by the RF [40]. Breiman et al [41] first 

introduced the decision trees in 1984. The decision tree grows on its own during the training phase, it does not depend on any hyper 

parameter to decide the number of nodes, leaves or any other parameter. Thus, it is a nonparametric type of model. Each decision 

tree is composed of internal nodes, responsible for evaluating incoming samples through a test function, and leaf nodes. The test 

function assesses the features of the sample, directing it down specific branches based on the outcome. Throughout the training 

process, the algorithm iteratively partitions the input data at each node. This process optimises the parameters of the split functions 

to best align with the current data subset. Obviously, the first split, encompassing the entire dataset, is crucial as it determines the 

most informative variable for subsequent branching. Assuming that ‘X’ is the input vector having a total of ‘m’ features, Y is the 

output scalar, and ‘Sn’ is the training set with ‘n’ observations, then: 
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X = {x1, x2….xm}, Y 

Sn = {(X1,Y1), (X2,Y2).....(Xn,Yn)}, X ∈ Rm, Y ∈ R 

 

The process of splitting input X starts at the root node, following that each node applies its own function to split the input. This is 

repeated recursively until a tree leaf is reached. It is common to terminate the tree when a maximum number of levels is reached. 

At the end of each tree, an output or predicting function (ĥ) is generated over Sn. Each tree in RF is grown according to a random 

subset of predictors, hence giving it its name. An L tree-structured base classifier h(X, Θk) is used in RF. Here, k = 1,2….L and Θk is 

a set of independent, identically distributed random vectors [42]. 

The process of splitting input X starts at the root node, following that each node applies its own function to split the input. This is 

repeated recursively until a tree leaf is reached. It is common to terminate the tree when a maximum number of levels is reached. 

At the end of each tree, an output or predicting function (ĥ) is generated over Sn. Each tree in RF is grown according to a random 

subset of predictors, hence giving it its name. An L tree-structured base classifier h(X, Θk) is used in RF. Here, k = 1,2….L and Θk is 

a set of independent, identically distributed random vectors [42]. 

An ensemble method known as “Bootstrap Bagging” or just Bagging is used in RF. Bagging is a technique also proposed by Breiman 

in 1996 [43] which minimises variance associated with regression models, hence improving the overall prediction accuracy of a 

model. RF is built by randomly sampling a training data subset for each decision tree. This is known as “bootstrap”, and a bootstrap 

sample is created by selecting n observations with replacement from Sn. The actual probability of each observation to be selected is 

1/n. The bagging algorithm picks multiple bootstrap samples (Sn
Θ1, Sn

Θ2, ..., Sn
Θq) and utilises the tree decision algorithm on these 

samples to create a set of q prediction trees, denoted as ĥ(X, Sn
Θ1),...,ĥ(X, Sn

Θq). Ensemble produces a total of  q outputs in accordance 

with each tree. The output is given by: 

Ŷ =  
1

𝑞
∑ Ŷ𝑙

𝑞

𝑙=1

=
1

𝑞
∑ ĥ(𝑋, 𝑆𝑛

𝜃𝑙) 

𝑞

𝑙=1

 

Here Ŷl is the output of l-the tree, and l = 1, 2,...,q. This framework of an RF is in Fig.5. 

 

V. CONCLUSION 

On training the RF model on the data generated from the Padulles Amphlett analysis of the PEM Fuel Cell, optimistic results have 

been obtained. The feature which the model has been trained to analyse is the Fuel Cell Efficiency (FCE).  

The metrics used to analyse the performance of the model are: 

1) The Mean Squared Error (MSE) is 1.14310-7 

2) The R2 score or the R-squared score is 0.9999834 
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Fig. 5. Random Forest Regressor Framework 

 

Fig. 6. Random Forest feature importance for Fuel Cell Efficiency 

In the RF Regressor, feature importance is an important tool that can be utilised to understand how much each feature is contributing 

in the target variable, and also sheds light on what parameters will cause the most impact on the FCE. This is shown in Fig. 6. 

A residual plot is a graphical tool used in regression analysis to examine the residuals or errors between the observed values and the 

predicted values. The residual graph calculated by the RF Regressor is shown in Fig.7. 

 

Fig. 7. Residual Plot of predicted Fuel Cell Efficiency 
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The research conducted in this study, gives a thorough understanding of what different parameters are instrumental in the functioning 

of a PEM Fuel Cell. It also underlines what parameters need improving on most to push the Fuel Cell Efficiency to the most. 
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