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Abstract - In this study, a dynamic mathematical model for COVID-19 was described. The analysis focuses on proving the existence 

of a disease-free equilibrium, which is locally asymptotically stable when the basic reproduction number is less than unity. Additionally, 

we determine the existence of an endemic equilibrium, providing insights into the long-term persistence of the disease. To further 

understand the behavior of the model, we delve into the global asymptotic stability of the disease-free equilibrium. This analysis involves 

the construction of a Lyapunov function, enabling us to assess the overall stability of the system through our comprehensive 

mathematical analysis, we aim to enhance our understanding of COVID-19 transmission dynamics, while offering a foundation for the 

development of effective strategies to mitigate the spread of the disease. 

 

Index Terms - Mathematical model, COVID-19, basic reproduction number, local stability, Lyapunov function, global stability 

I. INTRODUCTION  

The coronavirus outbreak, which originated in Wuhan, China on December 31, 2019, quickly escalated into a global crisis and was 

declared a public health emergency of international concern [10]. The primary method of transmission of the disease was through 

respiratory droplets released during coughing and sneezing, which poses challenges to containment efforts due to transmission from 

individuals showing symptoms and those without symptoms [4]. This unprecedented epidemic has underscored the urgent need for 

effective models to comprehensively understand and predict the spread of the disease, and thus aid in prevention and control strategies. 

Mathematical models that describe epidemiological processes have emerged as valuable tools for researchers to simulate and analyze 

disease transmission dynamics, predict disease outbreak patterns, and evaluate control strategies [5] [6] [12]. 

The "SIR model" is a widely used mathematical method for modeling infectious diseases. It consists of three ordinary differential 

equations (ODEs) that divide the population into three compartments: susceptible (S), infected (I), and recovered (R). These equations 

describe the rates of change as individuals’ transition between these compartments [11]. In addition to the SIR model, there are several 

generalizations such as the SEIR model, which incorporates an additional compartment for exposed individuals. The SEIR model 

involves four ODEs and is commonly used to simulate the outbreak of diseases like COVID-19 [2] [1] [7] [8]. These models play a 

crucial role in understanding the dynamics of disease transmission, predicting the spread of infections, and assessing the potential impact 

of intervention strategies. 

In certain studies, the population of infected individuals has been further subdivided into three subclasses: asymptomatic, mild 

symptoms, and severe symptoms [9]. However, a numerical analysis conducted in one study found no significant distinction between 

the asymptomatic and mild symptom groups. As a result, it is deemed sufficient to divide the infected population into two compartments: 

asymptomatic and symptomatic. Consequently, we will construct an (SIR) model that incorporates this subdivision of the infected class 

into asymptomatic and symptomatic individuals. This approach will enable us to better understand the dynamics of the disease 

transmission and assess the impact of interventions within each subgroup. 

The objective of this study is to develop a modified compartmental (SIR) model to accurately capture the transmission dynamics of 

Covid-19. We constructed SEIR model and discussed important preliminary concepts, including boundedness and the positivity of 

system (2.2). Furthermore, we presented the expressions for equilibria and the basic reproduction number, which are essential for 

understanding the spread of the disease. By establishing the global stability of the disease-free equilibrium, we gained insights into the 

long-term behavior of the disease. In conclusion, we emphasize the significance of the modified SIR model and discuss potential avenues 

for future research. 

II. MODEL FORMULATION  

The model formulation )𝑆 𝐸 𝐼𝑢𝐼𝑑𝑅( used in this study focuses on human- to- human transmission of the COVID-19 within a closed 

population. At a given time (t), the total human population is denoted as N(t) and is further divided into different compartments: 

(Susceptible S(t), Exposed E(t), asymptomatic infections 𝐼𝑢(t), symptomatic infections 𝐼𝑑(t) and recovered population R(t)). It is 

assumed that a recovered individual becomes immunized and is no longer susceptible to reinfection. Figure (1) illustrates the developed 

mathematical model for Covid-19, which has been further analyzed in this study.  
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             Figure 1 developed mathematical model for Covid-19 

The population in this study was divided into five sections or categories, as shown in Table (1). These parts represent different groups 

based on their infection status. In addition, Table 1 provides an overview of the parameters used in formulating Model (1). These 

parameters play a crucial role in determining system dynamics and are essential for understanding disease behavior. 

Table 1 Description of the variables and the Parameters for the model (1) 

variables for model (1) Parameters for the model (1) 

Variable Description Variable Description 

S(t) Susceptible 𝜈 Recruitment rate into susceptible population 

E(t) Exposed 𝛼 Progression rate from E to either  𝐼𝑢  or 𝐼𝑑 

𝐼𝑢(t) asymptomatic infections k Propagation  of  asymptomatic infections people  

𝐼𝑑(t) symptomatic infections 𝛽𝑢 Rate of transmission from S to E due to contract  with 𝐼𝑢 

R(t) Recovered 𝛽𝑑 Rate of transmission from S to E due to contract  with 𝐼𝑑 

  𝛽𝑠 𝛽𝑠 = 𝛽𝑢𝐼𝑢 + 𝛽𝑑𝐼𝑑  

  𝜓 Rate of transmission from     𝐼𝑢     to    𝐼𝑑 

  𝛾1 Rate of recovery of people from Iu 

  𝛾2 Rate of recovery of people from  Id 

  𝜇 Natural death rate 

 

III. MODEL CONSTRUCTS 

A mathematical model can be constructed to describe the spread of COVID-19 in a population. In this study, we consider a homogeneous 

distribution of individuals. The dynamics of the disease are governed by the following system of ordinary differential equations. Based 

on Figure 1, we establish the following model: 

�̇�(𝑡) = 𝜈 − (𝜇 + 𝛽𝑠)𝑆  (1)                                                                                  

�̇�(𝑡) = 𝛽𝑠𝑆 − (𝜇 + 𝛼)𝐸 (2)                                                                              

𝐼�̇�(𝑡) = 𝑘𝛼𝐸 − (𝜇 + 𝜓 + 𝛾1)𝐼𝑢   (3)     

𝐼�̇�(𝑡) = (1 − 𝑘)𝛼𝐸 + 𝜓𝐼𝑢 − (𝜇 + 𝛾2)𝐼𝑑   (4)                      

�̇�(𝑡) = 𝛾1 𝐼𝑢 + 𝛾2 𝐼𝑑 − 𝜇𝑅   (5) 

                                                                        
The model assumes that individuals in the susceptible class, S(t), can become exposed to the Covid-19 infection at a rate represented 

by 𝛽𝑠. The state vectors and associated parameters of the system of equations (1-5) are described in detail in Tables 1. The initial 

conditions associated with the system are as follows   𝑆(0) ≥ 0,   𝐸(0) ≥ 0 ,   𝐼𝑢(0) ≥ 0,   𝐼𝑑(0) ≥ 0, 𝑅(0) ≥ 0. 

IV. BASIC PROPERTIES OF THE MODEL 

In this section, we will discuss some fundamental properties of the proposed model. First, we establish the existence and boundedness 

of solutions to demonstrate that the model has well-defined solutions. Furthermore, these solutions are unique and confined within a 

positive invariant region. These properties ensure the well- pawedness and epidemiological significance of the developed model. 

Theorem 3.1.   

Let 𝐷 denote a rectangular region modeled with initial conditions  𝑆(0) ≥ 0,     𝐸(0) ≥ 0 ,   𝐼𝑢(0) ≥ 0,   𝐼𝑑(0) ≥ 0, 𝑅(0) ≥ 0, the 

solution of the model exist and bounded for all  𝑡 > 0. 
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Proof. Assume that 𝐹𝑖   be the right hand sides of the equations in the system (1-5), then differentiate them with the respect to the state 

variable; we get that 
𝜕𝐹𝑖  

𝜕𝑥𝑗
  are continuous and bounded in 𝐷,  where 𝑖, 𝑗 = 1,2,3,4,5. It’s obvious that the partial derivative of the whole 

system of equations exists, finite and bounded. For the model to be epidemiologically meaningful, it should to show that all its state 

variables are non-negative for all 𝑡 > 0. 

Theorem 3.2.   

Given 𝑆(0) ≥ 0,     𝐸(0) ≥ 0 ,   𝐼𝑢(0) ≥ 0,   𝐼𝑑(0) ≥ 0, 𝑅(0) ≥ 0, then the solutions of the model are positive for all 𝑡 > 0. 

Proof. Let 𝑡∗ = sup{ 𝑡 > 0: 𝑆 > 0,     𝐸 > 0 ,   𝐼𝑢 > 0,   𝐼𝑑 > 0, 𝑅 > 0  }. From the second equation of the system (1-5), we have 

�̇�(𝑡) > 𝛽𝑢𝐼𝑢𝑆 − (𝜇 + 𝛼)𝐸  . The integrating factor is given as  exp{(𝜇 + 𝛼) 𝑡}. By multiplying the inequality by the integrating 

factor (𝜇 + 𝛼) 𝑡 and integrating both sides with respect to time t from 0 to  𝑡∗ , we can derive the following expression: 

𝐸(𝑡∗) ≥  𝐸(0)exp{−(𝜇 + 𝛼)𝑡∗} + 𝛽𝑢exp{−(𝜇 + 𝛼) 𝑡∗} [∫ exp{(𝜇 + 𝛼) 𝑧}
𝑡∗

0

 𝐼𝑢(𝑧)𝑆(𝑧)𝑑𝑧]  ≥ 0 

Thus, we get 𝐸(𝑡) ≥ 0 when 𝐸(0) ≥ 0. In a similar way, it can be shown that 𝑆(𝑡) ≥ 0,   𝐼𝑢(𝑡) ≥ 0,   𝐼𝑑(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 in the model; 

which implies that all state variables 𝑆(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0,   𝐼𝑢(𝑡) ≥ 0,   𝐼𝑑(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 are all non- negative for all non-negative 

initial conditions. 

Theorem 3.3.   

The region 𝐷 is positively-invariant, which indicates that all solutions of the system (1-5) with the initial conditions 𝑆(0) ≥ 0,   𝐸(0) ≥

0 ,   𝐼𝑢(0) ≥ 0,   𝐼𝑑(0) ≥ 0, 𝑅(0) ≥ 0  in  𝐷 remain in 𝐷   for all 𝑡 > 0 

Proof.  By adding the two sides of the system (1-5) we have 
𝑑𝑁(𝑡)

𝑑𝑡
+ 𝜇𝑁(𝑡) = 𝑣 , which implies that     𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +

𝑣

𝜇
 ,    It can be written as 

       0 ≤ 𝑁(𝑡) ≤
𝑣

𝜇
+ [𝑆(0) + 𝐸(0) + 𝐼𝑢(0)  + 𝐼𝑑(0) + 𝑅(0)]𝑒−𝜇𝑡 . 

If   𝑁(0) <
𝑣

𝜇
   , then  lim

𝑡→∞
sup [𝑆(𝑡) + 𝐸(𝑡)𝐼𝑢(t)  +  𝐼𝑑(𝑡) + 𝑅(𝑡)] ≤

𝑣

𝜇
 .   Therefore, for all 𝑡 > 0 

 [𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝑢(t)  +  𝐼𝑑(𝑡) + 𝑅(𝑡)] ≤
𝑣

𝜇
.   Therefore, all orbits of system (1-5) with initial conditions 

𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼𝑢(0) ≥ 0,   𝐼𝑑(0) ≥ 0, 𝑅(0) ≥ 0  in  , remain in 𝐷 for all 𝑡 > 0. Thus the region 𝐷 is positively-invariant. 

Furthermore, if  𝑁(0) ≥
𝑣

𝜇
   then either 𝑁(𝑡)  𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠   

𝑣

 𝜇
  𝑎𝑠  𝑡 → ∞  and the infected variables 𝐸, 𝐼𝑢 ,   𝐼𝑑 , 𝑅  approaches zero, or 

the solution enters  𝐷  in the finite time.  Therefore, the region  𝐷 attracts all solutions in ℝ+
5  and all solutions of the system (1-5) are 

non-negative and epidemiological well posed. 

Through this paper, we shall consider the dynamical behaviors of the system (1-5) on the region  𝐷 = {(𝑆, 𝐸, 𝐼𝑢  , 𝐼𝑑 , 𝑅) ∈ ℝ+
5 : 0 ≤ 𝑆 +

𝐸 + 𝐼𝑢  +  𝐼𝑑 + 𝑅 ≤
𝑣

𝜇
} 

V.  MODEL ANALYSIS   

This section focuses on the analysis of equilibria and the basic reproduction number. By setting the right-hand sides of the system to 

zero, we can determine that the system (1-5) has only one disease-free equilibrium (DFE), which is denoted by 

𝒳° = (
𝑣

𝜇
 , 0 , 0, 0 , 0) 

Next, we will calculate the basic reproduction number (𝑅°) of the system (1-5) using the Next Generation Matrix (NGM) method. 

Basic reproduction number of the model. 

 To estimate the basic reproduction number for the COVID-19 infection, we employ the next generation matrix procedure [3]. 

Specifically, we focus on the infected subsystem (2-4), which can be represented as follows: 

 �̇�(𝑡) = 𝛽𝑠𝑆 − (𝜇 + 𝛼)𝐸       

𝐼�̇�(𝑡) = 𝑘𝛼𝐸 − (𝜇 + 𝜓 + 𝛾1)𝐼𝑢                                                                                                                                                        (2-4)                                                 

𝐼�̇�(𝑡) = (1 − 𝑘)𝛼𝐸 + 𝜓𝐼𝑢 − (𝜇 + 𝛾2)𝐼𝑑                                                                   

Let  𝒳 = (𝐸,   𝐼𝑢 ,   𝐼𝑑)𝑇, then the infected subsystem (2-4) can be written as 
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  𝒳 = ℱ(𝑥) − ℳ(𝑥), where  

ℱ(𝑥) = [
𝛽𝑠𝑆
0
0

]      ,   ℳ(𝑥) = [

(𝜇 + 𝛼)𝐸

−𝑘𝛼𝐸 + (𝜇 + 𝜓 + 𝛾1)𝐼𝑢
−(1 − 𝑘)𝛼𝐸 − 𝜓𝐼𝑢 + (𝜇 + 𝛾2)𝐼𝑑

]   

We can obtain  

𝐹 = [
0 𝛽𝑠

𝑣

𝜇
𝛽𝑑

𝑣

𝜇
0 0 0
0 0 0

]   ,    𝑀 = [

(𝜇 + 𝛼) 0 0

−𝑘𝛼 (𝜇 + 𝜓 + 𝛾1) 0

−(1 − 𝑘)𝛼 −𝜓 (𝜇 + 𝛾2)
] 

Then the next generation matrix for the system is taken by the spectral radians of 𝑁𝐺𝑀 = 𝐹 𝑀−1, where he spectral radius of the 

matrix  𝐹𝑀−1 denoted by 𝜌(  𝐹𝑀−1). 

𝑀−1 =

[
 
 
 
 
 
 

1

(𝜇 + 𝛼)
0 0

𝑘𝛼

(𝜇 + 𝛼)(𝜇 + 𝜓 + 𝛾1)

1

(𝜇 + 𝜓 + 𝛾1)
0

𝑘𝛼𝜓 + (1 − 𝑘)𝛼(𝜇 + 𝛼 + 𝛾1)

(𝜇 + 𝛼)(𝜇 + 𝜓 + 𝛾1)(𝜇 + 𝛾2)

𝜓

(𝜇 + 𝜓 + 𝛾1)(𝜇 + 𝛾2)

1

(𝜇 + 𝛾2)]
 
 
 
 
 
 

 

Then  

𝐹𝑀−1 = [

𝑘𝛼𝑣𝛽𝑢

𝜇𝐴𝐵
+

𝑣

𝜇
 
𝛽𝑑(𝑘𝛼𝜓 + (1 − 𝑘)𝛼𝐵)

𝐴𝐵𝐶

𝑣𝛽𝑢

𝜇𝐵
+ 

𝑣𝛽𝑑𝜓

𝜇𝐵𝐶

𝑣𝛽𝑑

𝜇𝐶
0 0 0
0 0 0

] 

 

Where A= (𝜇 + 𝛼), B= (𝜇 + 𝜓 + 𝛾1), C=(𝜇 + 𝛾2). 

 𝜌(  𝐹𝑀−1) =
𝑣

𝜇
 [
𝑘𝛼 (𝜇 + 𝛾2)𝛽𝑢 + 𝛼[𝜓 𝑘 + (1 − 𝑘)(𝜇 + 𝜓 + 𝛾1)]𝛽𝑑

(𝜇 + 𝛼)(𝜇 + 𝜓 + 𝛾1)(𝜇 + 𝛾2)
]. 

Therefore, the basic reproduction number of the system is  

𝑅° =
𝑣

𝜇
 [
𝑘𝛼 (𝜇 + 𝛾2)𝛽𝑢 + 𝛼[𝜓 𝑘 + (1 − 𝑘)(𝜇 + 𝜓 + 𝛾1)]𝛽𝑑

(𝜇 + 𝛼)(𝜇 + 𝜓 + 𝛾1)(𝜇 + 𝛾2)
] 

 

The Endemic Equilibrium.  

The disease-endemic equilibrium (DEE) of the system can be expressed as  𝒳∗ = (𝑆∗,  𝐸∗ , 𝐼∗
𝑢,   𝐼∗

𝑑  , 𝑅∗ ), for simplicity, 

 we put 𝐼∗
1 = 𝐼∗

𝑢  , 𝐼∗
2 = 𝐼∗

𝑑  , then 𝛽𝑠 = ∑ 𝛽𝑗
2
𝑗=1 𝐼𝑗 , where 

𝑆∗ =
𝑣

𝜇+∑ 𝛽𝑗
2
𝑗=1 𝐼∗𝑗

      (6)                                                                                                                                                                       

𝐸∗ =
(∑ 𝛽𝑗

2
𝑗=1 𝐼∗

𝑗)𝑆
∗

𝐴
      (7) 

 𝐼∗
1 =

𝑘𝛼(∑ 𝛽𝑗
2
𝑗=1 𝐼∗

𝑗)𝑆
∗

𝐵
     (8) 

 𝐼∗
2 =

1

𝐶
[
(1 − 𝑘)𝛼

𝐴
+ 𝜓 

𝑘𝛼

𝐵
](∑𝛽𝑗

2

𝑗=1

𝐼∗
𝑗)𝑆∗   (9) 

𝑅∗ = [
𝛾1𝑘𝛼

𝜇𝐵
+ (

𝛾2(1 − 𝑘)𝛼

𝜇𝐴𝐶
+

𝛾2𝜓𝑘𝛼

𝜇𝐵𝐶
)]  (∑𝛽𝑗

2

𝑗=1

𝐼∗
𝑗)𝑆∗ (10) 

Using the equation (8) and substituting the value of    𝑆 ∗, we get     𝐼∗
1 =

𝑘𝛼

𝐵
(∑ 𝛽𝑗

2
𝑗=1 𝐼∗

𝑗)
𝑣

𝜇+∑ 𝛽𝑗
2
𝑗=1 𝐼∗𝑗

 . Solving for  𝐼∗
1   we get   

( 𝐼∗
1) (𝜇𝐵 + {(𝐵 − 𝑣𝑘𝛼)∑𝛽𝑗

2

𝑗=1

𝐼∗
𝑗}) = 0 (11) 

The Equation (11) is a quadratic equation. Thus solutions are  𝐼∗
1 = 0 or   ∑ 𝛽𝑗

2
𝑗=1 𝐼∗

𝑗 =
𝜇𝐵

𝐵−𝑣𝑘𝛼
   ,where  𝐼∗

1 = 0 corresponds to the 

disease-free equilibrium point, hence the system has a unique endemic equilibrium 𝒳∗ when  ∑ 𝛽𝑗
2
𝑗=1 𝐼∗

𝑗 =
𝜇𝐵

𝐵−𝑣𝑘𝛼
 .  Hence the 
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expression of equation (9) can simplify as follows: 

 𝐼∗
2 =

𝐹𝐷𝑣

𝜇+𝐹
  , Thus we obtain that 

 𝐼∗
1 =

𝜇𝐵

𝛽1(𝑣𝑘𝛼 − 𝐵)
−

𝛽1

𝛽2

   
𝐹𝐷𝑣

𝜇 + 𝐹
 

Where,  𝐷 =
(1−𝑘)𝛼𝐵+𝜓𝑘𝛼𝐴

𝐴𝐵𝐶
          𝑖𝑓       (1 − 𝑘)𝛼𝐵 + 𝜓𝑘𝛼𝐴 > 0   

𝐹 =
𝜇𝐵

𝑣𝑘𝛼−𝐵
                𝑖𝑓   𝑣𝑘𝛼 >  𝜇 + 𝜓 + 𝛾1         Therefore, we have  

 𝐼∗
1 = [

𝜇2𝐵 + (𝜇𝐵 − 𝛽2𝑣
2𝑘𝛼𝐷 + 𝑣𝛽2𝐷𝐵)𝐹

(𝑣𝑘𝛼 − 𝐵)(𝜇 + 𝐹)
]  (12) 

 

 𝐼∗
2 = [

(1 − 𝑘)(𝜇 + 𝜓 + 𝛾1) + 𝜓𝑘(𝜇 + 𝛼)

𝑘[𝑣𝑘𝛼 − (𝜇 + 𝜓 + 𝛾1)](𝜇 + 𝛼)(𝜇 + 𝛾2)
]  (13) 

 

 

VI. STEADY STATE ANALYSIS 

We will demonstrate that the disease-free equilibrium (DFE) is both locally and globally asymptotically stable. For local stability, we 

will examine the negativity of the real parts of the associated Jacobian matrix. Additionally, we will construct a Lyapunov function to 

establish the globally asymptotic stability of the DFE. These analyses will provide insights into the stability properties of the model and 

the long-term behavior of the disease.  

Local stability of the disease‑free equilibrium of the model 

The result of local stability of the disease- free equilibrium 𝒳° = (𝑆° , 0 , 0, 0 , 0) for the system can is listed as following: 

Theorem 5.1.   

The disease-free equilibrium (DEF) of the model is locally asymptotically stable if   𝑅° < 1, and unstable if   𝑅° > 1.     

Proof. To study the stability of (DFE)  𝒳° = (𝑆° , 0 , 0, 0 , 0)  locally, we find the Jacobin of the system. 

𝐽 =

[
 
 
 
 
 
 
 
 
−(𝜇 + 𝛽𝑠) 0 − 𝛽𝑢𝑆 − 𝛽𝑑𝑆 0

𝛽𝑠 −(𝜇 + 𝛼) 𝛽𝑢𝑆 𝛽𝑑𝑆 0

0 𝑘𝛼 −(𝜇 + 𝜓 + 𝛾1) 0 0

0 𝛼(1 − 𝑘) 𝜓 −(𝜇 + 𝛾2) 0

0 0 𝛾1 𝛾2 −𝜇]
 
 
 
 
 
 
 
 

 

Evaluate the Jacobin of the system at (DFE) we get  

𝐽|𝒳°
=

[
 
 
 
 
 
 
 
 
 −𝜇 0 − 𝛽𝑢

𝑣

𝜇
− 𝛽𝑑

𝑣

𝜇
0

0 −(𝜇 + 𝛼) 𝛽𝑢

𝑣

𝜇
𝛽𝑑

𝑣

𝜇
0

0 𝑘𝛼 −(𝜇 + 𝜓 + 𝛾1) 0 0

0 𝛼(1 − 𝑘) 𝜓 −(𝜇 + 𝛾2) 0

0 0 𝛾1 𝛾2 −𝜇]
 
 
 
 
 
 
 
 
 

 

By solving the characteristic equation |𝐽(𝑥°) − 𝜆𝐼| = 0  , we get 𝜆1 = −𝜇   , 𝜆2 = −𝜇. Consequently, the local stability of the disease 

free equilibrium (DFE) is determined by the eigenvalues of the equations for E,  𝐼𝑢 and   𝐼𝑑 . The Jacobian matrix for these equations is 

given by: 

 

𝐽° = [

−(𝜇 + 𝛼) − 𝜆 𝛽𝑢

𝑣

𝜇
𝛽𝑑

𝑣

𝜇

𝑘𝛼 −(𝜇 + 𝜓 + 𝛾1) − 𝜆 0

𝛼(1 − 𝑘) 𝜓 −(𝜇 + 𝛾2) − 𝜆

] 
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So the characteristic polynomial for the matrix is  

𝜆3 + (𝐴 + 𝐵 + 𝐶)𝜆2 + [𝐴𝐵 + 𝐴𝐶 + 𝐵(−𝑎1 − 𝑎3)]𝜆 + 𝐴𝐵𝐶(𝑅° − 1) = 0                     

By applying the Routh-Hurwitz criteria, we can ensure that all the roots of the characteristic polynomial have negative real parts if the 

following conditions are met:       𝐴 + 𝐵 + 𝐶 > 0,    1 − 𝑅°  > 0       ⟹     𝑅°  < 1,  

(𝐴 + 𝐵 + 𝐶)[𝐴𝐵 + 𝐴𝐶 − 𝐵(−𝑎1 − 𝑎3)] > 𝐴𝐵𝐶(1 − 𝑅°) .  

Hence we have DFE is asymptotically stable when 𝑅°  < 1, and unstable otherwise. 

Global stability of the disease‑free equilibrium of the model 

Theorem 5.1.   

The disease free equilibrium 𝒳° is globally asymptotically stable when  𝑅° < 1, 

Proof.  Consider a Lyapunov function 𝑉(𝑡) = 𝑐1𝐸 + 𝑐2𝐼𝑢  +  𝑐3𝐼𝑑, where 𝑐1, 𝑐2, 𝑐3 are undetermined non- negative real numbers. The 

derivative of  𝑉(𝑡) along the solution curves of system has the following form 

𝑑𝑉

𝑑𝑡
= 𝑐1

𝑑𝐸

𝑑𝑡
+ 𝑐2

𝑑𝐼𝑢
𝑑𝑡

+ 𝑐3

𝑑𝐼𝑑
𝑑𝑡

 

𝑑𝑉

𝑑𝑡
= 𝑐1[(𝛽𝑢𝐼𝑢 + 𝛽𝑢𝐼𝑑)𝑆 − 𝐴𝐸] + 𝑐2[𝑘𝛼𝐸 − 𝐵𝐼𝑢] + 𝑐3[(1 − 𝑘)𝛼𝐸 + 𝜓𝐼𝑢 − 𝐶𝐼𝑑], 

𝑑𝑉

𝑑𝑡
≤ 𝑐1 [(𝛽𝑢𝐼𝑢 + 𝛽𝑑𝐼𝑑)

𝑣

𝜇
− 𝐴𝐸] + 𝑐2[𝑘𝛼𝐸 − 𝐵𝐼𝑢] + 𝑐3[(1 − 𝑘)𝛼𝐸 + 𝜓𝐼𝑢 − 𝐶𝐼𝑑], 

 
 𝑑𝑉

 𝑑𝑡
≤ [𝑐2𝑘𝛼 + 𝑐3(1 − 𝑘)𝛼 − 𝐴𝑐1]𝐸 + [

𝑣

𝜇
𝑐1𝛽𝑢 − 𝐵𝑐2 + 𝑐3𝜓] 𝐼𝑢 + [

𝑣

𝜇
𝑐1𝛽𝑑 − 𝑐3𝐶] 𝐼𝑑 . 

Now we select the coefficients  𝑐1, 𝑐2 and   𝑐3 with the zero coefficients of 𝐼𝑢 and 𝐼𝑑 . Hence we obtain 𝑐1 =
𝑣

𝜇
   ,    𝑐2 = [

1

𝐵
 
𝛽𝑢

𝜇
+ 𝛽𝑑

𝑣

𝜇

𝜓

𝐶
]

𝑣

𝜇
    

and 𝑐3 =  
𝑣

𝜇
[
𝛽𝑑𝑣

𝜇𝐶
]. 

Substituting the values of  𝑐1, 𝑐2  and  𝑐3 to 𝑉(𝑡), then the derivative of 𝑉(𝑡)  can be expressed as 

 𝑑𝑉

 𝑑𝑡
≤

𝑣

𝜇
𝐴[ 𝑅° − 1]𝐸  .  

Clearly,  
𝑑𝑉

𝑑𝑡
≤ 0  𝑤ℎ𝑒𝑛   𝑅°  < 1 , also 𝑉(𝑡) = 0 if and only if 𝐸 = 𝐼𝑢 = 𝐼𝑑 = 0. 

VII. CONCLUSION  

In this study, we have investigated an 𝑆 𝐸 𝐼𝑢𝐼𝑑𝑅 f epidemic model to describe the transmission dynamics of COVID-19. The model 

incorporates various population compartments, including the susceptible, exposed, asymptomatic infections, symptomatic infections, 

and recovered individuals. We have shown the existence of a disease-free equilibrium and demonstrated its local and global asymptotic 

stability when the basic reproduction number, R₀, is less than 1. This implies that the disease can be effectively controlled and eventually 

eradicated under certain conditions. Additionally, we have explored the conditions for the existence of an endemic equilibrium, which 

represents a persistent level of infection in the population. These conditions provide insights into the factors that contribute to the 

sustained transmission of COVID-19. Overall, our findings contribute to the understanding of the transmission dynamics of COVID-

19 and highlight the importance of effective control measures to prevent its spread. Further research can focus on extending the model 

to incorporate more complex factors and evaluating the impact of different intervention strategies on disease control. 
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