A Review on Upgrading Calorific Value of Biogas from the Digester

1st **Mr.D.D.prajapati** , 2nd **Prof. D.D.Mevada** , 3rd **Mr.Akshit Pate**

¹Designation of 1st M.E. Student, 2nd Assistant Professor & I/C HoD Mechanical Engg. Department, HCET, Sidhpur, 3rd Assistant

Professor 1st Thermal Engineering

¹ddprajapati68@ yahoo.com, ² Write24dinesh@gmail.com, ³akshitpatel1@ yahoo.com

Abstract - The consumption of fossil fuel is increasing day by day and is going to deplete soon. Biogas is a clean environment friendly fuel. Biogas produced in the digester from anaerobic digestion of organic waste cannot be used straight off as a fuel. The gases produced in the digester from anaerobic digestion are methane and trace components like carbondioxide, water vapour, hydrogen sulphide, siloxanes, Hydrocarbons, NH₃, O₂, CO and N₂. To use biogas as fuel, its calorific value should be about equal to calorific value of natural gas. Hence calorific value of biogas can be upgraded by removing carbon dioxideand trace components from biogas obtained from the digester. These gases are not completely combustible and will harm, living beings, engine parts and the monuments. Upgrading biogas, two steps are performed: (1) cleaning process to separate trace components of gases and (2) upgrading process to improve calorific value of biogas. This paper reviews the attempt made to upgrade calorific value of a biogas by using different methods for upgrading.

Index Terms - fossil fuel, biogas, Calorific Value

Nomenclature

CV-Calorific value VSA-vacuum swing adsorption PSA-pressure swing adsorption

I. INTRODUCTION

Anaerobic fermentation (AF) of organic waste produces a biogas with high concentration of methane (CH₄). The biogas formed in AF plants consists of 55–80vol% CH₄, 20–45vol%CO₂, 0–1.0vol%H₂S, 0–0.05vol% NH₃and it is saturated with water [1]. Methane is the component chiefly responsible for a typical calorific value of 21-24 MJ/m³ or around 6kWh/m³. Biogas is used for cooking, warming, lighting or electricity generation. Larger plants can feed biogas into gas supply networks. The activities of at least three bacterial communities are required by the biochemical chain which releases methane. Initially, during hydrolysis process, extracellular enzymes degrade complex carbohydrates, proteins and lipids into their constituent units.

Next is acidogenesis (or fermentation) where hydrolysis products are transformed to acetic acid, hydrogen and carbon dioxide. The facultative bacteria mediating these reactions exhaust residual oxygen in the digester, thus producing suitable conditions for the last step: methanogenesis, where obligate anaerobic bacteria control methane production from acidogenesis products. Anaerobic digesters are typically planned to run in the mesophilic (20–40 °C) or thermophilic (above 40 °C) temperature zones. Sludge produced from the anaerobic digestion of liquid biomass is often used as a fertilizer[2]. The main impurities arecarbon dioxide, which lowers the calorific value of the gas and hydrogen sulphide which could cause several problems on the engine parts and on human health, it causes corrosion in engine parts (compressors, gas storage tank and engines), while it is toxic after its inhalation. Although CO_2 is a major problem in the biogas and its removal is useful to upgrade the calorific value and the relative density according to the specifications of the Wobbe index [3,4].

The unwanted CO_2 will lower the quality of biogas and contribute to negative effect on biogas compression. After removing CO_2 , biogas can be used as renewable and low carbon fuel substituting natural gas for electricity generation and natural gas vehicle transportation. Methods for biogas upgrading is mainly concentrated on the removal of CO_2 with a little CH_4 loss [5]. After upgradation, the final product is referred to as 'Biomethane', typically holding 95-97% CH_4 and 1-3% CO_2 . Biomethane can be utilized as an alternative for natural gas [6]. Biogas can be utilized for high temperature and steam production, electricity production and/or co-generation, vehiclesfueling, chemicals production and injection into the natural gas grid. Nevertheless, using biogas as a vehicle fuel or injecting it into the natural gas grid is applications that are gaining interest at the international stage. In both the terminal cases, an appropriate upgrading of the biogas i.e. removal of CO_2 and trace contaminants is required. The output gas from the upgrading procedure is generally called Biomethane and it is qualified by an increased content of methane with respect to the entering biogas [7].

Fig. 1.Wobbeindex and relative density as function of methane content of the upgraded gas [4].

II. METHODS OF REMOVING CO₂

A. Absorption

a) Chemical absorption process

Three agents NaOH, KOH and Ca(OH)₂ can be used in chemical upgrading of biogas [8]. The absorption process is based on using aqueous solutions of potassium hydroxide, with the final aim of producing potassium carbonate. The absorption reaction between KOH and the CO_2 produces an aqueous solution of K₂CO₃:

$$2 \text{ KOH} + \text{CO}_2 \rightarrow \text{K}_2 \text{CO}_3 + \text{H}_2 \text{O} \qquad (1.1)$$

In this reaction, excess KOH leads to an increased production of potassium carbonate, while excess CO_2 leads to undesired chemical reaction as follows:

Potassium carbonate is a product which has many applications in the chemical industry if adequate quality is available (e.g., crystal industry, special glass production, potassium salts, inks and pigments, detergents, food industry, waste gas treatment). It can be sold as a pulverized solid, or in aqueous solution. The volumetric concentration of CH_4 significantly increases between 85-97%, similar to conventional natural gas quality [9]. This process may have higher energetic penalties since the CO_2 removal in biogas is a bulk removal process. The CH_4 purity in the range 97-98% is obtained[10].

b) Physical absorption process

This is one of the easiest and least cost method involves the use of pressurized water as an absorbent. The raw biogas is compressed and fed into a packed bed column from the bottom and the pressurized water is sprayed from the top. The absorption process is, thus a counter-current one. This dissolves CO_2 as well as H_2S in water, which are collected at the bottom of the tower. The water could be recycled to the first scrubbing tower [8]. This is the simplest method for upgrading biogas. A continuous counter-current type scrubber with gas flow rate of 1.8 m³/h at 0.48 bar pressure and water inflow rate of 0.465 m³/h. It continuously reduced CO_2 from 30% at inlet to 2% at the outlet by volume [8]. With this technique, H_2S is removed with CO_2 . Also the purified CH_4 stream (with purity up to 98%) should be dried after leaving the scrubber [10]. The below figure shows that physical absorption of CO_2 in water at elevated pressure. The packed bed scrubbing column with 3500 mm in height and the packing material used was ceramic resching rings. 99%

Fig. 3. Setup for biogas purification and bottling plant [13].

In below setup CO₂ removal ratio increases from 34.6% to 94.2% when liquid/gas ratio was varied from 0.14 to 0.5 at different temperature. At pressure of 1.2 MPa with gas flow rate of 400 L/h and water flow rate 200 L/h, the CO₂removal ratio obtained is 94.2%. Higher pressure improves CO₂ removal ratio. For better CO₂ removal, both pressure and liquid/gas ratio must be controlled. When the temperature increases from 7°C to 40°C, the CO₂ removal ratio decreases from 85.3% to 52.2%. Hence, lower the

When the temperature increases from 7° C to 40° C, the CO₂ removal ratio decreases from 85.3% to 52.2%. Hence, lower the temperature in absorption tower is helpful for the improvement of CO₂ removal.

Increasing the water inflow rate, increases the CO_2 removal efficiency. When CO_2 content in the simulated gas increases from 25% to 45% at different inlet water flow rate, the CO_2 removal ratio increases from 24.4% to 83.2%. Finally in this method, 2.6% of CO_2 is present which meets the requirement of CO_2 content in the natural gas for vehicle fuel.

1-CO₂ cylinder; 2-air compressor; 3-gas buffer tank; 4-absorption tower; 5-rich solution tank; 6-heat exchanger; 7-desorption tower; 8-air blower; 9-water pump; 10-lean solution tank

B.Adsorption

PSA and VSA are technologies that use a column filled with a molecular sieve to separate some gas species from a mixture of gases under pressure [15,16]. To separate CO_2 ,

activated carbon, silicagel, alumina or zeolite are typically used. The molecules are adsorbed in a reversible way in the cavities of the molecular sieve, so it is possible to create a cyclic batch process where the adsorber can be regenerated. Adsorption is performed at a relatively high pressure (800 kPa) while desorption is performed at lower pressure [17]. Normally four vessels are used, each working on a different stadium: adsorption, depressurization, desorption and pressurization [11]. Before the PSA or VSA unit, H₂S must be taken out in order to prevent poisoning of the molecular sieve. In addition, the PSA process requires dry gas; so it is necessary to dry raw biogas before the upgrading process. PSA and VSA are similar systems, with the only difference that VSA requires a supplementary vacuum pump in this case the differential pressure is fixed at a lower absolute pressure [12].

Fig. 5. Set-up of (vacuum) pressure swing adsorption [4].

TIJER || ISSN 2349-9249 || Technix International Journal for Engineering Research

The efficiency of this process is up to 98% [8]. One of the advantage of the PSA process is that is can be adapted to biogas upgrading in any part of the world since it does not depend on the availability of cold or heat sources [10].

C.Membrane separation processes

The use of membranes for gas cleaning is a well established technology in chemical industries. The membrane is a porous material that lets some gases permeate through its structure. The most commonly used materials are hollow fibers made of different polymers [10].

a) Gas-gas separation

Gas is pressurized (2000 to 3600 kPa) and cleaned to remove hydrocarbons, H_2S and oil vapor. Acetate-cellulose membranes separate small polar molecules as CO_2 , H_2S and moisture. With this technique, it is possible to purify biogas to maximum 92% CH_4 in one step. With more steps (two or three), a gas with even more than 96% CH_4 is achieved. The off-gas still contains 10-25% of CH_4 , so that it has to be flared or used in a steam boiler [19,20]. Besides operation at high pressure, a pilot study has been carried out at low pressure (800 kPa) membrane separation system. Trace components need to be removed before the membrane-unit i.e. by an active natural gas can be achieved, compared to high pressure membrane separation techniques [21].

b) Gas-liquid separation

Gas-liquid absorption membranes have been developed recently and they consist in a micro porous hydro-phobic membrane that separates the gaseous from the liquid phase. The gas stream molecules which are able to diffuse through the membrane will be absorbed on the other side by the liquid. This process involves gas and liquid flowing in counter current. The gas is pressurized, so liquid is prevented to flow to the gas side. This process operates at atmospheric pressure (100 kPa), with advantages on the point of view of construction and operating cost. The removal of CO_2 is carried out with an amine solution and biogas with more than 96% CH_4 can be obtained in one step. Furthermore the amine solution can be regenerated by heating. During this process, a pure CO_2 flow is released and can be sold for industrial applications [19].

D. Cryogenic separation

It is possible to produce bio-methane by cooling and compressing the biogas, since different impurities liquefy at different temperature and pressure conditions. The raw gas is compressed in multiple stages, up to 8000 kPa. To prevent freezing during the cooling steps, the gas is dried before. After the compression, the biogas is cooled until -45 °C. The condensed CO_2 is removed and treated to recover the CH_4 . The biogas is cooled further to -55 °C; afterward is expanded to 800-1000 kPa reaching the temperature of -110 °C. In this condition, there is solid CO_2 and a gaseous phase with more than 97% CH_4 , which is collected and heated before leaving the process [4,11,8].

In the Netherlands, a cryogenic system to upgrade biogas to natural gas quality wasimplemented in four steps[20]. The incoming biogas is first compressed to 1000 kPa and cooled to -25 °C. Moisture, H₂S, SO₂, halogens, siloxanes and other trace components are removed from the biogas. From there, the biogas is further cooled till -55 °C. Liquefied CO₂ is taken out from the gas mixture so the calorific value is increased. The remaining gas stream is further cooled till -85 °Cwhere CO₂convertsinto solid form. Three vessels are used: one is for upgrading the biogas, set at -85 °C, one is kept at intermediate temperatures (-85 °Cto -60 °C) and one vessel is set at -60 °Cto liquefy the CO₂. The gaseous phase is depressurized and can be injected after removing odour into the natural gas grid. The results show high efficiency and low methane losses [20].

E.Biological methane enrichment

In this experiment, different methanogens using only CO₂ as a carbon source and H₂ as an energy source were examined. The selection between mesophilic and thermophilic operation temperatures is typically based on whether the completion of reaction or the rate of reaction is of primary concern. Thermophilicmethanogens exhibit rapid methanogenesis, while mesophilic bacteria give more complete conversion of the available CO₂. The organism works optimally at temperatures of 65-70 °C and has a specific requirement for H₂S, so both unwanted components are removed. A synthetic biogas of 50-60% CH₄, 30-40% CO₂ and 1-2% H₂S was mixed with H₂ to a final mole fraction of H₂: CO₂equaling 0.79:0.21. The gas mixture was fed to the hollow fiberspacked with organisms. This biological system can effectively remove CO₂and H₂S, while approximately double the original CH₄mass. Alternative

TIJER || ISSN 2349-9249 || Technix International Journal for Engineering Research

physicochemical treatment methods only get rid of the contaminating gas components, without changing CH_4 mass. The purified biogas contains about 96% CH_4 and 4% CO_2 , while H_2 and H_2S were not detected.

III. METHODS OF REMOVING H₂S

A. Removal of H_2S during digestion

 H_2S can be treated directly in the digester vessel and the most used techniques to interfere with its formation are adding air/oxygen or iron chloride [4, 11].

a)Air/oxygen dosing to the biogas system

This technique is based on the biological aerobic oxidation of H_2S to elemental sulfur by a group of specialized microorganisms. The following reaction occurs in the biogas:

Elemental sulfur and sulfate is formed, which cause corrosion in solutions. A small amount (2-6%) of O_2 needed for the reaction to occur, is introduced in the biogas system by an air pump. A reduction of H₂S concentrations down to 20-100100 cm³/m³ and a removal efficiency of 80-99% can be achieved [15,19,8]. Safety steps have to be adopted to avoid overdosing of air in the digester. Biogas in air (6-12%) is an explosive mixture. Safety must be considered so that anaerobic conditions remain present in parliamentary procedure to prevent the digestion process from being inhibited [19,8].

b)Addition of iron chloride into the digester

Iron chloride reacts with the H₂S present in the biogas to form FeS as solid precipitated particles. These are the chemical reactions:

$$2Fe^{3+} + 3S^{2-} \rightarrow 2FeS + S$$
 (1.4)
 $Fe^{2+} + S^{2-} \rightarrow FeS$ (1.5)

The presence of H_2S in the biogas is avoided due to precipitation of FeSand therefore this method can achieve a reduction of H_2S concentration in the biogas down to 100 cm³/m³ at standard condition [22].

B.Removal of H_2S after digestion

a) Adsorption using iron oxide or hydroxide

Hydrogen sulfide reacts easily with iron oxide, iron hydroxide and zinc oxide and forms iron sulfide or zinc sulphide respectively. This procedure is frequently concerned to as "iron sponge" because rust-covered steel wool may be employed to form the reaction bed. Iron oxide and iron hydroxide react with H_2S in the biogas according to following reactions

 $Fe_2O_3 + 3H_2S \rightarrow Fe_2S_3 + 3H_2O \qquad (1.6)$

 $2Fe(OH)_3 + 3H_2S \rightarrow Fe_2S_3 + 6H_2O \quad (1.7)$

The iron oxide can be regenerated with oxygen according to the following reaction:

$$2Fe_2S_3 + 3O_2 \rightarrow 2Fe_2O_3 + 6S \qquad (1.8)$$

This reaction is exothermic and therefore a great amount of high temperature is released during regeneration. This may contribute to self-ignition of the wood chips, if air flow and temperature are not carefully checked. Typically two reaction beds are established. One bed is regenerative while the other bed removes H_2S from the biogas [15]. The formed elementary sulfur remains on the surface and blocks the active iron oxide or hydroxide, restricting the number of cycles that can be performed [19].

b) Adsorption on activated carbon

 H_2S can also be removed by using activated carbon often dosed with KI or sulfuric acid (H_2SO_4) to increase the reaction rate. In biological filters the H_2S is catalytically converted to elemental sulfur and water:

$$2H_2S + O_2 \rightarrow 2S + 2H_2O \quad (1.9)$$

The biogas must have a certain amount of air before entering the carbon bed, therefore 4-6% air is added. The formed elementary sulfur is adsorbed by the activated carbon. Best efficiency is obtained at pressures of 700-800 kPa and temperatures of 50-70 °C. This temperature is easily achieved through heat generation during compression. If a continuous process is required the system canconsist of two vessels [4,11,19]: one vessel for adsorption and the other for regeneration. Regeneration can be performed with hot nitrogen

(inert gas) or steam. The sulfur is vaporized and, after cooling, liquefied at approximately 130 °C. Typically, the activated carbon is replaced rather than regenerated [4,6,11].

IV. METHODS OF REMOVING WATER

A.Physical drying methods (condensation)

The simplest way of removing excess water vapor is through refrigeration. The minimum dew point reachable is 0.5 °C at atmospheric pressure due to freezing problems on the surface of the heat exchanger. To achieve lower dew point the gas has to be compressed before cooling and then later expanded to the desired pressure [4,11]. The utilization of any form of anti-freezing compound is not advocated. The chemical treatment it is very complicated and adding other compounds would be overly expensive and would need more complexity in the system. In fact, adding any chemicals in the gas requires a control injection system to ensure the correct composition and an absorption tower to re-separate the glycol from the biogas.

Techniques using physical separation of condensed water include:

- Demisters in which fluid molecules are removed by wired mesh (micro-pores, 0.5-2 nm);

- Cyclone separators in which water droplets are separated using centrifugal forces;

- Moisture traps in which the condensation takes place by the expansion. As result the temperature reductions and the water condenses;

- Water taps in the biogas pipe from which condensed water can be removed [4,22].

B.Chemical drying methods

These techniques are usually applied at elevated pressures. The most usual technique is adsorption by using alumina or zeolites/molecular sieves. Methods based on gas drying include:

- Adsorption of water vapor on silica, alumina or equal chemical components that can hold water molecules (adsorption dryer). Two chemical columns are often used together in order to adsorb the water and to regenerate the adsorber;

- Absorption of water in triethylene glycol. Regeneration of saturated glycol solvent is made out in a specific unit operating at a temperature of 200 °C;

- Absorption of water with hygroscopic salts. The salt dissolves as it takes up water from the biogas. The salt is not regenerated and new salt granules have to be added to replace the dissolved salt [4,11].

V. CONCLUSION

Biogas produced from animal waste is a valuable energy resource. By combusting waste methane (biogas), a powerful greenhouse gas is eliminated that would otherwise be released. One of the most interesting utilization of Biomethane is as a vehicle fuel. The exchange of conventional fossil fuels with Biomethane can provide up to 80% less greenhouse gas discharges. The cost of Biomethane without incentives is generally not competitive compared with conventional natural gas. For increasing CV of biogas CO_2 must be removed from it and thus obtaining Biomethane.Biomethane, due to its composition (97 to 99 % of CH_4), delivers all the right qualities that natural gas has: it is one of the most environmental friendly combustion fuel, it is easy to carry and it can be utilized as fuel for all kinds of vehicle.

REFERENCES

- [1] L. V. –A. Truong, Abatzoglou N: A H₂S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass and Bioenergy 29 (2005) 142-151.
- [2] Michael R. Templeton, Tom Bond:History and future of domestic biogas plants in the developing world. Energy for Sustainable Development 15 (2011) 347–354. ACCESS JOURNAL
- [3] P. Iovane, F. Nanna, Y. Ding, B. Bikson, Molino A: Experimental test with polymeric membrane for the biogas purification from CO₂ and H₂S. Fuel 135 (2014) 352–358.
- [4] Hagen M, Polman E, Jensen J, Myken A, Johnsson O, Dahl A: Adding gas from biomass to the gas grid. 144. Malmo⁻, Sweden: Swedish Gas Center; 2001 July. pp.Report SCG 118.
- [5] Tao Bo, Xiaoyu Zhu, Lixia Zhang, Yong Tao, Xiaohong He, Daping Li, Zhiying Yan: A new upgraded biogas production process: Coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochemistry Communications 45 (2014) 67–70.
- [6] Ryckebosch E, Drouillon M, Vervaeren H: Techniques for transformation of biogas to biomethane. Biomass and Bioenergy35 (2011) 1633-1645.
- [7] EnnioCarnevale, Lidia Lombardi: Economic evaluations of an innovative biogas upgrading method with CO_2 storage. Energy 62 (2013) 88-94.
- [8] S.S. Kapdi, V.K. Vijay, S.K. Rajesh, Rajendra Prasad: Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renewable Energy 30 (2005) 1195–1202.
- [9] Lidia Lombardi, Andrea Corti, EnnioCarnevale, Renato Baciocchi, Daniela Zingaretti:Carbon Dioxide Removal and Capture for Landfill Gas Up-grading. Energy Procedia 4 (2011) 465–472.
- [10] Carlos A. Grande: Biogas Upgrading by Pressure Swing Adsorption. Biofuel's Engineering Process Technology (2011).
- [11] Persson M. Utvarderingavuppgraderingstekniker for biogas. Malmo⁻⁻, Sweden: SvensktGasteknisktCenter; 2003 November.
 85 pp. Rapport SGC 142.

- [12] Enggas [Internet]. Gilbertsville: Engineered Gas Systems Worldwide, Inc.; c2003 [cited November 2007]. Available from: http://www.enggas.com.
- [13] Virendra K. Vijay, Ram Chandra, Parchuri M. V. Subbarao and Shyam S. Kapdi: Biogas Purification and Bottling into CNG Cylinders: Producing Bio-CNG from Biomass for Rural Automotive Applications, Sustainable Energy and Environment (SEE 2006).
- [14] Yong Xiao, Hairong Yuan, Yunzhi Pang, Shulin Chen, Baoning Zhu, DexunZou, Jingwei Ma, Liang Yu, Xiujin Li: CO₂ Removal from Biogas by Water Washing System, Energy, Resources and Environmental Technology (2014).
- [15] Krich K, Augenstein A, Batmale J, Benemann J, Rutledge B, Salour D: Upgrading Dairy Biogas to Biomethane and Other Fuels. In: Andrews K., Editor. Biomethane from Dairy Waste - A Source book for the Production and Use of Renewable Natural Gas in California. California: Clear Concepts; 2005.p. 47-69.
- [16] Bourque H: Use of liquefied biogas in transport sector. [Internet] Confe´rencesur les cre´ dits CO₂ et la valorisation du biogaz ; 2006 Avril 20. [cited January 2011] Available from: <u>www.apcas.qc.ca</u>.
- [17] Gomes VG, Hassan M M:Coalseam methane recovery by vacuum swing adsorption. SeparPurifTechn 2001;24: 189-96.
- [18] Matthias Wessling, Marco Scholz, ThomasMelin: Transforming biogas into biomethane using membrane technology, Renewable and Sustainable Energy Reviews 17 (2013) 199–212.
- [19] Wellinger A, Lindberg A: Biogas Upgrading and Utilisation. [Internet] IEA Bioenergy Task 24: Energy From Biological Conversion of Organic Waste; 2005 [cited January 2011].
- [20] Welink J-H, Dumont M, Kwant K. Groen Gas: Gas van aardgaskwaliteituit biomass: update van de studieuit. 2007 January. 34 p. Nederland: Senternovem; 2004 [Report].
- [21] Roks MFM, Luning L, Coops O: Feasibility of applying new membrane for processing landfill gas to natural gas quality at low pressure (8 bar). [Haalbaarheidtoepassingnieuwmembraanvooropwerkingstortgasnaaraardgaskwaliteitbijlagedruk (8 bar)] Nederland: Aquilo Gas Separation by; 1997. 57 p. Report.
- [22] Schomaker AHHM, Boerboom AAM, Visser A, Pfeifer AE: Anaerobic digestion of agro-industrial wastes: information networks e technical summary on gas treatment. Nijmegen, Nederland: AD-NETT; 2000 August. Report No.: FAIR-CT 96-2083 (DG12-SSMI) 31.

